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Abstract

The empirical literature on nominal exchange rates shows that the current ex-

change rate is often a better predictor of future exchange rates than a linear

combination of macroeconomic fundamentals. This result is behind the famous

Meese-Rogo� puzzle. In this paper we evaluate whether parameter instability can

account for this puzzle. We consider a theoretical reduced-form relationship be-

tween the exchange rate and fundamentals in which parameters are either constant

or time varying. We calibrate the model to data for exchange rates and funda-

mentals and conduct the exact same Meese-Rogo� exercise with data generated by

the model. Our main �nding is that the impact of time-varying parameters on the

prediction performance is either very small or goes in the wrong direction. To help

interpret the �ndings, we derive theoretical results on the impact of time-varying

parameters on the out-of-sample forecasting performance of the model. We con-

clude that it is not time-varying parameters, but rather small sample estimation

bias, that explains the Meese-Rogo� puzzle.



1 Introduction

The empirical literature on nominal exchange rates shows that the current ex-

change rate is often a better predictor of future exchange rates than a linear

combination of macroeconomic fundamentals. This result is behind the famous

Meese-Rogo� puzzle. In their seminal work, Meese and Rogo� (1983a, 1983b) es-

timate linear regression models based on standard macroeconomic variables. Using

rolling regressions, they show that forecasts based on these models do not outper-

form forecasts based on the current exchange rate, even when the actual future

macro fundamentals are used. Their results have largely held up since then, even

with much more data available.1 A potential explanation of this puzzle is that the

relationship between nominal exchange rates and macroeconomic fundamentals is

unstable. There is widespread evidence documenting this instability.2 In their

original work, Meese and Rogo� themselves already conjectured that parameter

instability may explain their results.

The goal of this paper is to evaluate whether parameter instability can in-

deed account for the Meese-Rogo� puzzle. In order to do so, we proceed in three

steps. We �rst conduct a Meese-Rogo� exercise on �ve currencies of industrial-

ized countries from 1975 to 2008. We estimate rolling regressions and forecast out

of sample using actual future fundamentals. We then compute the Mean Square

Prediction Error (MSE) and compare it with the MSE resulting from a prediction

based on the current exchange rate. Our results con�rm once again the original

Meese-Rogo� �ndings: exchange rate depreciations are better predicted by a ran-

dom walk than by the estimated linear model. In the second step, we assume

a theoretical reduced-form relationship between exchange rate and fundamentals

in which parameters are constant. We calibrate the model to data for exchange

rates and fundamentals for the �ve currencies. In the �nal step, we introduce

exogenous parameter instability to the relationship between exchange rates and

fundamentals.3 We then conduct the exact same Meese-Rogo� exercise with the

1See for example Cheung, Chinn and Pascual (2005) and Rogo� and Stavrakeva (2008).
2See Wol� (1987), Meese and Rogo� (1988), Schinasi and Swamy (1989), and Rossi (2006).

In a recent study, Sarno and Valente (2008) show that to achieve the best exchange rate forecast,

one needs to continuously change the set of variables used. More generally there are numerous

studies that document structural breaks and regime switching in nominal or real exchange rates.
3In a closely related paper, Bacchetta and van Wincoop (2009) endogenously derive large time
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data generated by the reduced-form model, both for constant and time-varying pa-

rameters. To help interpret the �ndings, we also derive theoretical results on the

impact of time-varying parameters on the out-of-sample forecasting performance

of the model.

It is easy to see why it is natural to consider time-varying parameters in ac-

counting for the Meese-Rogo� puzzle. If parameters were constant and known, the

linear model would by construction outperform the random walk. As long as the

observed macro fundamentals have any explanatory power, the model obviously

has more explanatory power than a random walk forecast. In order to explain the

Meese-Rogo� �ndings, we therefore have to relax the assumption that parameters

are constant and known. One way to do this is by assuming that parameters are

constant, but not known. With samples of �nite length, parameters are estimated

with error. Such estimation error contributes to a forecasting error and can explain

the Meese-Rogo� �ndings. Not surprisingly, this has received signi�cant attention

in the literature and statistics have been developed to correct for such small sample

bias (e.g. Clark and West (2006)).

But the forecasting performance can further deteriorate when parameters them-

selves are varying over time. Even ignoring the small sample estimation errors, a

�nite sample provides an estimation of a weighted average of parameters over the

estimation sample. This average of past parameters is not necessarily a good mea-

sure of future parameters. The resulting further deterioration is what Meese and

Rogo� had in mind when pointing to time-varying parameters as a possible reso-

lution to the weak out-of-sample performance of the model. However, we �nd that

time-varying parameters also work in another, opposite, direction. Abstracting for

a moment from estimation errors of the parameters, we show that time variation

in parameters improves the average explanatory power of fundamentals. This is

because parameters sometimes become high in absolute value and therefore fun-

damentals have more explanatory power. This second implication of time-varying

parameters actually improves the out-of-sample performance of the model relative

to the random walk.

We �nd that the two e�ects typically o�set each other when the reduced-form

variation in the relationship between exchange rates and fundamentals as a result of incomplete

information about very slow moving structural parameters of the economy. In this paper we take

the instable relationship between exchange rates and fundamentals as exogenously given.
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model is calibrated to the data. Thus, the impact of time-varying parameters on

prediction performance is very small. We show that there are two cases where the

impact of time-varying parameters on the out-of-sample performance can become

signi�cant, but neither can explain the Meese-Rogo� puzzle. One is the case where

the persistence of parameters is close to 1. But in this case time variation implies

a better prediction performance, so this goes in the wrong direction. The second

case is one where fundamentals have high explanatory power. In this case parame-

ter instability can substantially deteriorate the out-of-sample performance of the

model. But in reality the observed fundamentals have very limited explanatory

power. More importantly, in this case there is no Meese-Rogo� puzzle because the

model always outperforms the random walk, whether parameters vary or not. We

conclude that it is not time-varying parameters, but rather small sample estimation

bias, that explains the Meese-Rogo� puzzle.

The remainder of the paper is organized as follows. In section 2 we discuss

empirical results from the Meese-Rogo� exercise. In section 3 we propose a the-

oretical reduced-form exchange rate model, with either constant or time-varying

parameters. We calibrate the model with constant parameters to the data. In sec-

tion 4 we discuss results from conducting the Meese-Rogo� exercise on the model.

We �nd that time-varying coe�cients play almost no role. To shed further light

on these �ndings, in section 5 we derive theoretical results on the impact of time-

varying parameters on the ability of the model to forecast out of sample. We then

connect these results to the �ndings from the simulations in section 4. In section

6, we extend this analysis to the in-sample �t. Section 7 examines some further

implications of the theoretical model. Section 8 concludes.

2 Out-of-Sample and in-Sample Fit in the Data

In order to evaluate both the out- and in-sample relationship between exchange

rates and fundamentals, we consider �ve currencies relative to the U.S. dollar:

Swiss franc, British pound, Canadian dollar, Japanese yen and German mark (euro

since 1999). We use monthly data from September 1975 to September 2008. The

�ve macro fundamentals that we consider as exchange rate predictors are standard:

di�erential of money supply growth, industrial production growth and unemploy-

ment rate growth relative to the U.S.; growth in the oil price; and the lagged
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interest rate di�erential relative to the U.S..4 Following Meese-Rogo� and most of

the literature, the regressions are estimated individually.5 A precise description of

the data and data sources can be found in Appendix A.

Figure 1 reports the relative out-of-sample �t for each of the �ve currencies, as

well as the average across the �ve currencies. It is the ratio of the mean squared

error (MSE) of a one period ahead forecast from the estimated model relative

to the MSE of a random walk (or no change) forecast. The model forecasts are

based on rolling regressions of sample length L. The �rst regression is run on a

sample of length L that starts in September 1975. After regressing the change

in the log exchange rate on the �ve macro fundamentals over this sample (plus a

constant), we forecast one month out of sample using the estimated parameters of

the fundamentals together with the actual macro fundamentals one month out of

sample.6 The di�erence between the \forecast"of the change in the log exchange

rate one month out of sample and the actual change in the log exchange rate is the

forecast error. Subsequently this is repeated for a sample of length L that starts

one month later, in October 1975, and so on. We conduct a total of P = 200

rolling regressions in order to compute the mean squared forecast error. For the

random walk the forecast error is the actual change in the log exchange rate as the

forecasted change is zero. The standard measure of relative out-of-sample �t of

the model is the ratio of the MSE of the model to the MSE of the random walk.7

Several conclusions can be drawn from Figure 1. First, it shows that the Meese-

4The variables considered are consistently available over the full sample for the six countries

considered. The use of lagged interest rates is justi�ed in Molodtsova and Papell (2009), who

evaluate the predictive content of Taylor-rule fundamentals for exchange rates. Notice that the

vast empirical literature on exchange rates has shown that the precise set of variables is not

crucial for the results.
5Some authors show a better forecasting performance when equations are estimated simul-

taneously. See, e.g., Mark and Sul (2001), Groen (2005), Cerra and Saxena (2008), Rogo� and

Stavrakeva (2008) and Carriero, Kapetanios, and Marcellino (2009).
6This should therefore not be considered as a true forecasting exercise as the actual future

fundamentals are used.
7There are obviously various ways to evaluate forecasting performance. In this paper, we

restrict ourselves to the MSE ratio. Many recent papers consider tests taking into account small

sample biases, e.g., following Clark and West (2006). It is not necessary to consider such an

adjustment in our context since our objective is to compare actual data to the data generated

by a model with the same sample size.
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Rogo� �nding that the model does not outperform the random walk continues to

hold up in the data. With the exception of L > 150 for Canada, the model fails to

outperform the random walk for all currencies. Second, as expected, the relative

performance of the model improves with the sample length as estimation error of

the parameters becomes less severe for longer samples. The average for the �ve

currencies shows that MSE ratio gradually drops from 1.21 for L = 40 to 1.02 for

L = 196 (the maximum sample length). But it is remarkable that even for the

relatively long sample of L = 196, which is 16.3 years, the model on average still

does not outperform the random walk.

A �nal point to notice about Figure 1 is that there are signi�cant di�erences

across currencies. The MSE ratio decreases gradually with a rise in L for the

Swiss franc, German mark and Canadian dollar, but it does not show a strong

trend for the yen and it suddenly rises around L = 100 for the British pound.

Also, in contrast to the other currencies, the Canadian dollar is the only one for

which the model does outperform the random walk for a long enough horizon.

Such di�erences are to be expected as estimation error of the parameters depends

on the speci�c shocks that hit these currencies during the sample. As emphasized

by Cheung, Chinn, and Pascual (2005) or Alquist and Chinn (2008), no model

consistently outperforms the random walk by the MSE criterion. Some models

(that is, some sets of explanatory fundamentals) can outperform the random walk

for some currency (as in our case for Canada when the sample is long enough), but

no model consistently outperforms the random walk across currencies and samples.

Figure 2 reports both the out-of-sample �t (same as Figure 1) and the in-

sample �t. The latter is one minus the average in-sample R2. For a particular

sample length L, the average R2 is computed as the average R2 over the same

P = 200 rolling regressions that are used to estimate parameters for the out-of-

sample forecasts. Figure 2 con�rms what is well known, that the in-sample �t is

better than the out-of-sample �t. There would be no di�erence between the two

if parameters were known (estimated without error), whether they are constant or

time-varying. It is the estimation error of parameters that causes the in-sample

�t to be better than the out-of-sample �t. Estimation error re
ects a spurious �t

within sample, causing the R2 to be particularly high for low L. But at the same

time it is a source of forecast errors in the out-of-sample exercise that deteriorates

the performance of the model relative to the random walk by the MSE criterion.

5



This is illustrated nicely in the last chart, for the average of the 5 currencies. While

the out-of-sample �t deteriorates as L decreases (MSE ratio rises), the in-sample

�t improves (1�R2 goes down).

The average R2 across all �ve currencies ranges from 0.16 for L = 40 to 0.04

for L = 196. There are signi�cant di�erences across currencies. For L = 196

the R2 ranges from 0.02 for the German mark to 0.06 for the yen. There is

no straightforward relationship between in- and out-of-sample performance. One

might expect that currencies where fundamentals have more explanatory power

have both a better in- and out-of-sample performance. But we have already seen

that small sample estimation error improves the in-sample �t while it deteriorates

the out-of-sample �t. This may explain why for example the out-of-sample �t for

L = 196 is much better for the Canadian dollar than the yen (MSE ratio of 0.97

versus 1.03), while the in-sample �t is worse for the Canadian dollar than the yen

(R2 of 0.05 versus 0.06).

In the context of the rolling regressions, it is interesting to see that parameter

estimates move over time. This could potentially be an indication of time varia-

tion. This time variation is illustrated in Figure 3, for a speci�c coe�cient. In the

3 charts of that Figure, we report the estimated coe�cients associated with the

money growth di�erential in the JPY/USD rolling regressions. The 3 charts cor-

respond to 3 di�erent sample lengths L = 40; 120 and 200.8 The �rst observation

on each chart is the value of the estimated regression coe�cient over a sample that

starts in September 1975 and contains L data points. We then shift the whole

estimation sample one period and estimate the coe�cient again, and repeat the

procedure until we reach the end of the sample. As we would expect, the estimated

coe�cients appear more time-varying for smaller regression samples. For L = 40,

the coe�cient varies from �8 to +10, whereas it varies only from �1:5 to +4 for
L = 200.

Finally, it is interesting to note that even though most exchange rate models

cannot beat the random walk, there are some exceptions. One is the case of com-

modity currencies.9 Figure 4 shows the average MSE ratio across three currencies

8We have scaled the original fundamentals by a constant number so that the estimated co-

e�cient of is equal to 1 in a regression over the whole sample. The next section explains this

normalization in more detail.
9Chen and Rogo� (2003) report that world commodity prices are an important determinant
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against the U.S. dollar: Australian, Canadian and New Zealand dollars. For each

currency, the MSE ratio is computed using the same procedure as above, but over

P = 120 forecasts due to the shorter sample available.10 One-month ahead fore-

casts from the model are based on a regression of the change in the log nominal

exchange rate on the contemporaneous change in the log of the country-speci�c

index of commodity prices (and a constant). The average MSE ratio is below 1 for

every sample size, so that the model clearly beats the random walk.

3 Model and Calibration

We will adopt the following reduced form exchange rate model:

�st =
NX
n=1

�ntfnt + ut (1)

fnt = �nfn;t�1 + �fnt (2)

ut = �uut�1 + �ut (3)

�nt � �n = ��(�n;t�1 � �n) + ��nt (4)

where st is the log exchange rate and fnt represents fundamental n. The constant

parameter case corresponds to �� = 0 and ��nt = 0;8n; t. The innovations are
normally distributed with mean zero and variance

var

0BB@
�ft

�ut
��t

1CCA =
0BB@

f 0 0

0 �2u 0

0 0 �2�IN

1CCA (5)

for the real exchange rate of several major commodity exporters, like Australia, Canada and

New Zealand. Chen (2004) �nds that augmenting standard monetary models for the nominal

exchange rate of commodity currencies with commodity export prices improves the in-sample �t.

In terms of out-of-sample �t, the improvement is mixed and depends on the speci�cation chosen.

Chen, Rogo� and Rossi (2008) show that the reverse relationship is much stronger: exchange

rates of commodity currencies contain useful information to predict global commodity prices.
10Australia and New Zealand have experienced shorter 
oating exchange rates episodes than

the other currencies. In order to be able to compare the MSE ratio from the three currencies, we

choose the largest possible common sample which starts in January 1986 and ends in December

2008.
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where

�ft =

0BB@
�f1t
::

�fNt

1CCA ��t =

0BB@
��1t
::

��Nt

1CCA (6)

The change in the exchange rate depends on N observed fundamentals fnt.

It is also driven by unobserved fundamentals, which are summarized in ut. The

fundamentals follow AR(1) processes, with generally di�erent AR coe�cients. We

allow for a general variance-covariance structure of the innovations in the observed

fundamentals. The unobserved fundamental ut also follows an AR(1) process. Its

innovation is uncorrelated with that of the observed fundamentals. When allowing

for parameter uncertainty, we assume an AR(1) process for each of the parameters.

We assume that the parameter innovations are uncorrelated across fundamentals.

In calibrating the model we match the key moments of fundamentals and ex-

change rates in the data. This is done as follows. For each of the �ve currencies

in section 2 we regress �st on a constant and each of the �ve observed fundamen-

tals, using the entire sample of monthly data from September 1975 to September

2008. For fundamental n this gives us an estimate of the mean parameter value

�n. Without loss of generality we then rede�ne the fundamentals, by multiplying

them with appropriate constants, in order to normalize all �n to 1. For example,

when the estimated coe�cient is 0.5, we de�ne a new fundamental that is 0.5

times the old fundamental. The estimated coe�cient for the new fundamental is

then 1, which is our estimate for �n. This procedure has the advantage that all

fundamentals have the same mean coe�cients.

Next we estimate the AR(1) processes (2) for the fundamentals for each of the

currencies. For fundamental n we set the AR coe�cients �n equal to the average of

the estimated AR(1) coe�cients across the �ve currencies. We use the estimated

innovations to compute the correlation matrix of fundamental innovations as well

as their standard deviations. We then set the correlation matrix for the innova-

tions equal to the average across the �ve currencies and similarly for the standard

deviation of the fundamental innovations. These numbers give us the matrix 
f .

One comment is in order about this procedure so far. When applying the model

to each of the �ve currencies of Section 2, we will assume the same AR coe�cients

�n and covariance matrix 
f for each of the currencies. One can also use separate

estimates for each currency. The disadvantage of that approach though is that
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the results will very much depend on estimates of the mean parameters for each

of the currencies (before they are normalized to 1), which are subject to small

sample estimation error that will a�ect the standard deviation of the normalized

fundamentals. Similarly, small sample errors will a�ect the estimate of �n for

individual currencies. To minimize such errors, we average across currencies to

compute �n and the standard deviation of fundamental innovations. We �nd that

the results from model simulation using this procedure �t the data better than

estimating the �n and 
f separately for each currency.

Finally, we need an estimate of the standard deviation and persistence �u of

the error ut in the exchange rate equation. We estimate this separately for each

currency by matching the observed standard deviation and �rst-order autocorrela-

tion of �st. We do so for the constant parameter case, but the results are virtually

identical for the time-varying parameter case as overall exchange rate volatility is

not much a�ected by time-varying parameters.11

We will not use data to estimate �� and �� for the time-varying parameter

case. This is related to the key �nding of the paper: it is very hard to empirically

distinguish between constant and time-varying parameters. Therefore instead we

consider a wide range of assumptions about �� and in most of the analysis we will

set �� such that the unconditional standard deviation of the parameters is quite

large: equal to the mean value 1 of the parameters.12

4 Impact of Time-Varying Parameters

In this section we use the model presented above to generate data and compute

the MSE ratios as in Section 2. Before considering the impact of time-varying

parameters on both the out-of-sample and in-sample �t, we �rst discuss the results

from model simulations for the constant parameter case. For each currency we

conduct 1000 simulations of the model over 397 month samples, corresponding to

the September 1975 to September 2008 sample in the data. For each simulation,

11This is due to the fact that observed fundamentals have limited explanatory power as mea-

sured by the low R2 for long data samples. Therefore the standard deviation of ut is quite close

to the standard deviation of �st.
12The unconditional variance, which is �2�=(1� �2�), is then 1 as well. For a given �� , we then

set �2� = 1� �2� .
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we �rst generate a history of 1000 months prior to our 397 month sample in order

to avoid having to start from a steady state. All innovations are drawn from the

normal distributions discussed in the previous section.

Figure 5 reports for each currency the MSE ratio in the model relative to the

random walk. Results are reported for both the data and the model. For the

model, there are three lines: the average over the 1000 simulations and the upper

and lower bands of the 99% con�dence interval based on the 1000 simulations.

The results for the data generally conform to those for the model simulations.

The MSE ratio in the data generally falls within the 99% con�dence band for

the model. There are a few exceptions when it rises slightly above the con�dence

band. Particularly noteworthy are the German mark, where the data are generally

close to the upper band of the con�dence interval, and the British pound, where

the data are pretty much on top of the upper band of the con�dence interval for

L > 120. As is the case in the data, the average MSE ratio in the model (across

the 1000 simulations) remains above 1 for all currencies but the Canadian dollar,

where it reaches below 1 for L su�ciently big. Also, as is the case for the average

of the currencies, the average MSE ratio in the model gradually falls as L rises.

Figure 6 reports the results for the in-sample �t. There are again four lines,

which represent the data, the average of 1000 simulations of the model and the

upper and lower bands of the 99% con�dence interval based on the 1000 simula-

tions. The results for the data always lie within the con�dence band based on the

model simulations. Both in the model simulations and the data, the average R2

always declines in the sample length L. For the Swiss franc, Canadian dollar and

German mark, the R2 is somewhat lower in the data than the average over 1000

model simulations. For the other two currencies, the British pound and the yen,

it is the other way around.

Overall the data are consistent with the model simulations for the constant

parameter case. This may lead one to believe that time-varying parameters are

not needed to explain the in- and out-of-sample �t. To examine this more closely,

we will now compare the in- and out-of-sample �t for the constant parameter

case to the time-varying parameter case. This is done in Figures 7 and 8 for

�� = 0, which report respectively the average out-of-sample and average in-sample

�t across 1000 simulations of both the constant and time-varying parameter cases.

Di�erent values for �� are considered in Figures 9 and 10. In each of these cases
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the unconditional standard deviation of the parameters is set at 1, equal to the

mean value of the parameters. This amounts to considerable variation over time

in the parameters. A two-standard deviation band of the parameters ranges from

-1 to +3.

Figure 7 reports results for the MSE ratio for each of the currencies, as well as

the average across the currencies. Each chart contains two lines, which represent

the MSE ratio for the constant and time-varying parameter cases. With the mar-

ginal exception of the Canadian dollar, the MSE ratio for the constant parameter

case is virtually indistinguishable from the time-varying parameter case. The two

lines are virtually on top of each other. In order to show that there is a slight

di�erence, in the bottom charts of Figure 7 we zoom in for L is 120 through 130

with a much narrower range of numbers on the vertical axis. The range is 0.015 in

the bottom charts versus 0.3 in the top charts, so 20 times smaller for the bottom

charts.

From the bottom charts we can see that the MSE ratio is slightly higher for the

time-varying parameter case. But the di�erence is tiny. It is on average, across the

5 currencies, equal to 0.002 for L = 120. Even for Canada, where the di�erence is

by far the largest and visible by the naked eye on the top chart, it is only 0.007

for L = 120. While this goes in the right direction in terms of explaining the

high MSE ratio, it does not amount to much quantitatively. The top chart for the

average of the �ve currencies pretty much sums this up.

Analogous results are reported in Figure 8 for the in-sample �t, the average

R2. It is again the case that with the exception of the Canadian dollar, the

di�erence between the average R2 for the constant parameter case is virtually

indistinguishable from the time-varying parameter case. The bottom charts again

zoom in on the range of L from 120 to 130 with a total range of the vertical axis of

0.01 (again 20 times smaller than the top charts). It shows that the average R2 is

slightly lower for the time-varying parameter case. This is consistent with the out-

of-sample �t also being slightly weaker in the time-varying parameter case. But

the di�erence is again tiny. For the average of the �ve currencies, the average R2

is 0.001 lower for the time-varying parameter case than for the constant parameter

case when L = 120.

So far we have only considered the case where �� = 0. In Figure 9 we compare

the results for four di�erent values of ��: 0, 0.5, 0.9 and 0.98. In order to save space
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we now only report the average across the �ve currencies across 1000 simulations

of the model. The charts at the bottom again zoom in on the range of L from

120 to 130. These charts again have a range on the vertical axis that is 20 times

narrower than for the top charts. The results for �� = 0:5 are virtually identical to

�� = 0. If we increase �� even further, to 0.9, the di�erence between the constant

and time-varying parameter case becomes even smaller. The di�erence is now only

0.0007 for L = 120.

When we increase �� even further, the MSE ratio at some point becomes lower

for the time-varying parameter case than the constant parameter case. This is

illustrated in the last chart of Figure 9, where set �� = 0:98, which is close to a

random walk for the parameters. In that case the MSE ratio is not only lower

for the time-varying parameter case, but the di�erence is not insigni�cant. The

di�erence in the MSE ratio is 0.008 for L = 120 and an even bigger 0.013 for

L = 80. While these numbers are not negligible, they do not help in explaining

the Meese-Rogo� puzzle of underperformance of the model relative to the random

walk. If anything, this makes the puzzle only worse as time-varying parameters

improve the out-of-sample performance of the model relative to the random walk.

We should also emphasize that this is a rather extreme case that is only relevant

when �� is close to 1 (random walk). Otherwise the out-of-sample �t is virtually

the same in the constant and time-varying parameter cases.

Figure 10 reports analogous results for the in-sample �t. Here we see a similar

pattern. As we raise ��, the di�erence between the time-varying and constant

parameter case at �rst becomes smaller and then changes sign. In this case the

di�erence becomes smaller when we raise �� from 0 to 0.5. The average R2 is

now 0.0005 lower for the time-varying case than the constant parameter case for

L = 120. When we raise �� further to 0.9, the average R
2 is now higher in the

time-varying parameter case. The di�erence is 0.005 for L = 120. When we raise

�� further to 0.98 the di�erence rises further to a substantial 0.014 for L = 120 and

0.016 for L = 80. This is consistent with the out-of-sample performance, where

the �t is also substantially better for the time-varying parameter case when ��

gets close to 1.

To summarize, the impact of time-varying parameters on both the in- and out-

of-sample �t is either close to zero or, in the case where �� is close to 1, goes in

the wrong direction in that it lowers the MSE ratio. We can conclude that time-
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varying parameters do not help to explain the weak out-of-sample performance of

the model relative to the random walk.

5 What Explains the Out-of-Sample Results?

In order to shed light on the out-of-sample results of the previous section, we now

derive an explicit theoretical expression for the MSE ratio in the context of a some-

what simpli�ed version of the model. For the purpose of this theoretical exercise

we simplify the model in three ways. First, we assume that the autoregressive

coe�cients on the fundamentals are the same for all fundamentals. Second, we as-

sume that 
f = �2fIN , where IN is the identity matrix of size N . This is therefore

a symmetric case where all fundamentals have the same standard deviation and

their innovations have zero correlation. Finally, we assume that �u = 0, which in

any case is close to our calibration results.

In addition to these simpli�cations, we will only compute the MSE ratio for the

case where P =1. In other words, we will consider an in�nite number of rolling
regressions over samples of length L. MSEMODEL andMSERW will then be equal

to the expectation of the mean square errors for any particular sample of length

L. Moreover, we compute the mean square error of the model without a constant

term. While these changes will not make the results completely comparable to

those in section 4, they will nonetheless shed clear insight into what factors drive

the out-of-sample forecasting performance of the model relative to the random

walk and particularly the role of time-varying parameters.

We �rst compute the expected mean squared error for the random walk pre-

diction. This is equal to the unconditional expectation of �s2t . Since

�st =
NX
n=1

�ntfnt + ut (7)

our assumptions above imply that

MSERW = E(�s2t ) = Nvar(f)(�2 + var(�)) + var(u) (8)

where

var(�) =
�2�

1� (��)2
; var(u) = �2u; var(f) =

�2f
1� (�f )2
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The expected mean squared error of the model is a bit more complicated to

compute. We describe the main results, leaving details of the algebra to Appendix

B. The �rst step is to estimate the parameters from a regression of �st on the

fundamentals over a sample of L periods. Assume that the regression uses data

from t�L to t�1 and the results are used at t�1 to forecast �st. Let �̂ denote the
vector of estimated parameters of the N fundamentals. De�ne ft = (f1t; ::; fNt)

0).

We have

�̂ =

 
LX
i=1

ft�if
0
t�i

!�1 LX
i=1

ft�i�st�i =
LX
i=1

�i�t�i +  t
LX
i=1

ut�ift�i (9)

where the weights �i are matrices that sum to the identity matrix I:

�i =

0@ LX
j=1

ft�jf
0
t�j

1A�1 ft�if 0t�i
and

 t =

0@ LX
j=1

ft�jf
0
t�j

1A�1

is a matrix as well. The estimate �̂ therefore has two components. The �rst is a

weighted average of past parameters �t�i. The second is a component due to small

sample estimation error. This last component will vanish to zero when the sample

length L approaches in�nity.

Using expression (9) for the estimated parameters in the rolling regressions, we

have

MSEMODEL = E(�st � f 0t �̂)
2 = (10)

var(f)E

 
�t �

LX
i=1

�i�t�i

!0  
�t �

LX
i=1

�i�t�i

!
+ var(u)E(f 0t tft) + var(u)

Apart from the noise shocks ut, two factors drive the mean squared forecast error in

the model. Both are related to the fact that the future parameter is unknown and

needs to be estimated. The �rst is the standard small sample estimation error. This

is captured by the term var(u)E(f 0t tft) and applies equally under constant and

time-varying parameters. Second, in the presence of time-varying parameters there

is an additional source of estimation error. Even abstracting from small sample

estimation error, the parameter estimate is a weighted average of parameters over
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the past L periods. This weighted average of past parameters will di�er from the

parameter vector tomorrow when parameters change over time. This is captured

by the term var(f)E
�
�t �

PL
i=1 �i�t�i

�0 �
�t �

PL
i=1 �i�t�i

�
. Both of these sources

of parameter estimation error raise the mean squared forecast error.

In the Appendix we derive an expression for the estimation error that is due

to time-varying parameters:

E

 
�t �

LX
i=1

�i�t�i

!0  
�t �

LX
i=1

�i�t�i

!
= Nvar(�)h (11)

where

h = z
2

L� 1

L�1X
i=1

(L� i)
h
1� (��)i

i
+

2

L(L� 1)

LX
i=2

(i� 1)
h
1� (��)i

i
and z > 0 is the expectation of any element on the diagonal of �0i�i (for any i).

We can now evaluate the implications of time-varying parameters for the MSE

ratio. We have

MSEMODEL

MSERW
= 1 +

MSEMODEL �MSERW

MSERW
= (12)

1 +
�Nvar(f)�2 + var(u)E(f 0t tft)

Nvar(f) [�2 + var(�)] + var(u)
+

Nvar(f)var(�)(h� 1)
Nvar(f) [�2 + var(�)] + var(u)

First set var(�) = 0, so that parameters are constant. Then the last fraction

is zero. We will refer to the �rst fraction as Mc, which is the MSE ratio minus 1

under constant parameters:

Mc =
�Nvar(f)�2 + var(u)E(f 0t tft)

Nvar(f)�2 + �2u
(13)

It has two parts. First, to the extent that fundamentals have explanatory power

the model's performance is better than the random walk. This is captured by

the term �Nvar(f)�2 in the numerator. Second, small sample estimation error of
parameters deteriorates the out-of-sample performance of the model relative to the

random walk. This is captured by the term var(f)E(f 0t tft) > 0 in the numerator.

This latter e�ect tends to dominate, especially for small samples L, so thatMc > 0

and the MSE ratio is larger than 1.

Now consider the impact of time-varying parameters. The impact comes through

three channels. First, it raises the MSE for the random walk as �st becomes a bit
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more volatile due to time-varying parameters. This by itself reduces the MSE ratio,

assuming thatMc > 0. It is re
ected by the increase in var(�) in the denominator

in the �rst ratio of (12). Second, time-varying parameters raise the estimation

error of the future parameter. The estimation is now of a weighted average of past

parameters, which is not equal to the future parameter. This additional estima-

tion error, which comes on top of the small sample estimation error that equally

applies under constant parameters, is captured by h > 0 in the second ratio of

(12). This deteriorates the out-of-sample performance of the model relative to the

random walk. Third, abstracting from estimation error, time-varying parameters

increase the explanatory power of fundamentals as they raise the expectation of

the squared parameters. This lowers the MSE ratio and is captured by the term

-1 after the h in the numerator of the last ratio in (12).

This last point is perhaps most clearly illustrated by considering a case of time-

varying parameters where the parameters are known, so that we can completely

abstract from estimation error. The variance of the component of �st that is

explained by fundamentals is then

var(
NX
n=1

�ntfnt) = Nvar(f)E�2nt = Nvar(f)(�2 + var(�)) (14)

which rises with parameter volatility. (14) shows that what matters for the ex-

planatory power of fundamentals is not the mean level of parameters, but the

expectation squared level of parameters, E�2nt, which rises with parameter volatil-

ity.

The increased MSE for the random walk and the increased explanatory power

of fundamentals under time-varying parameters (increase in E�2nt) both reduce the

MSE ratio. On the other hand, the increased estimation error of the parameters

raises the MSE ratio. We would like to know how this adds up and what the e�ect

is quantitatively. In order to do so, we will take the derivative of the MSE ratio

in (12) with respect to var(�) at the point where var(�) = 0 (constant parameter

case). Also setting � = 1, we get

�

 
MSEMODEL

MSERW

!
= R2c [�Mc + h� 1] dvar(�) (15)

where

R2c =
Nvar(f)

Nvar(f) + �2u
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is the in�nite sample R2 in the constant parameter case.

The e�ect of time-varying parameters depends both on R2c and the term �Mc+

h � 1 that re
ects the increase MSE of the random walk (�Mc), the increased

estimation error of the parameters (+h) and the increased explanatory power of

the fundamentals under time-varying parameters (�1). With respect to the R2,
for the average of the 5 currencies we have R2c = 0:032. Clearly, the quantitative

e�ect of time-varying parameters is reduced by the fact that the explanatory power

of the fundamentals is quite limited. The parameters do not matter much if the

fundamentals that multiply them do not have much explanatory power for �st in

the �rst place.

Equation (15) allows us the break down the impact of time-varying parameters

into three components: the e�ect of the increase in the MSE of the random walk,

the increased estimation error of the parameters and the increased explanatory

power of the fundamentals. We provide this breakdown in Figures 11 and 12. In

doing so we set the variance of the fundamentals equal to the average across the �ve

fundamentals from section 4 and we set �u to match the average standard deviation

of the exchange rate change across the �ve currencies. We also set dvar(�) = 1 as

we did in section 4.

Figure 11 shows results for the same four di�erent values of �� considered in

section 4: 0, 0.5, 0.9 and 0.98. Each chart shows the total impact of time-varying

parameters on the MSE ratio (change relative to the constant parameter case) as

well as the role of each of the three contributing factors. We should point out that

while the exercise is not exactly comparable to that in section 4 due to various

simpli�cations that we adopted in this section, the total impact of time-varying

parameters on the MSE ratio is nonetheless very close to that reported in section

4 and shown in Figure 9.

Several points can be made from Figure 11. First, as before, the total impact of

time-varying parameters is tiny. The only exception is again the case of �� = 0:98,

when time-varying parameters reduce the MSE ratio by an amount that is non-

trivial for low L. Second, in terms of the breakdown the largest impact comes from

the rise in the MSE ratio due to increased estimation error and the drop in the

MSE ratio due to increased explanatory power of the fundamentals. But these two

factors almost exactly o�set each other. The only exception is again the case where

�� = 0:98. In that case the increase in the MSE ratio due to increased estimation
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error of the parameters is dominated by the increased explanatory power of the

fundamentals. When �� ! 1, then h ! 0 and time-varying parameters do not

lead to increased estimation error of the parameters. This is because parameters

become highly persistent and the standard deviation of parameter innovations goes

to zero when �� ! 1 and we hold var(�) constant.

The role of �� is further illustrated in Figure 12. It is analogous to Figure 11

except that we keep L = 120 and now vary �� from 0 to 1. Figure 12 clearly

shows that �� only plays a role when it gets very close to 1. In that case the

increased estimation error goes away and the increased explanatory power of the

fundamentals leads to a substantial reduction in the MSE ratio. But unless �� is

nearly 1, we can conclude that the impact of time-varying parameters on the MSE

ratio is negligible. The increase in the MSE ratio due to increased estimation error

of the parameters is almost exactly o�set by the decrease due to the increased

explanatory power of the fundamentals. Even if we believe that �� is very close to

1, it would not help to resolve the Meese-Rogo� puzzle: instead of explaining the

poor performance of the model, time-varying parameters improve it relative to the

random walk in that case.

Since time-varying parameters have little overall impact on the MSE ratio, we

conclude that the underperformance of the model relative to the random walk is

entirely due to small sample estimation error of parameters that applies equally

under time-varying and constant parameters. Figure 13 illustrates this for the case

of constant parameters. As can be seen from the expression for Mc in (13), two

factors contribute to the MSE ratio under constant parameters. First, if the para-

meters were known, the model clearly outperforms the random walk, lowering the

MSE ratio by about 0.03. Second, small sample estimation error of the parameters

raises the MSE ratio. It is this second factor that dominates, especially for low L

and explains why the model does not outperform the random walk. Additionally

introducing time-varying parameters does not signi�cantly change this conclusion.

6 What Explains the in-Sample Results?

In the previous section we have looked at what factors drive the impact of time-

varying parameters on the out-of-sample �t. In this section we do the same for

the in-sample �t. De�ne �̂t as estimated vector of coe�cients in a regression of the
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change in the log exchange rate on the fundamentals over the sample (t�L; t�1).
This is

�̂t =

 
LX
i=1

ft�if
0
t�i

!�1 LX
i=1

ft�i�st�i =
LX
i=1

�i�t�i +  t
LX
i=1

ut�ift�i (16)

The R2 of this regression is

R2 = 1�
1
L

PL
j=1(�st�j � f 0t�j �̂t)

2

1
L

PL
j=1�s

2
t�j

(17)

So far both in the data and the model we have de�ned the in-sample �t as the

average R2 over the P = 200 rolling regressions. For the purpose of this section

we de�ne it slightly di�erently. We de�ne it as in (17) but with an expectation

in both the numerator and denominator. One can think of the ratio in (17) as

a ratio of two mean squared errors: the in-sample mean squared regression error

and the mean squared random walk forecast error. The average R2 is equal to one

minus the average ratio of these mean squared errors across the rolling regressions.

Instead we now de�ne the in-sample �t as one minus the ratio of the average of

these mean squared errors across P = 1 rolling regressions. This signi�cantly

facilitates the analysis, while both in the data and model simulations it makes

little di�erence whether one uses the average ratio or the ratio of the average for

the in-sample �t.

De�ning the in-sample �t as in (17) with the expectation in both the numerator

and denominator, after some algebra that is in Appendix C we obtain

R2 =
Nvar(f)�2 + N

L
var(u)

Nvar(f)[�2 + var(�)] + var(u)
+

Nvar(f)var(�)(1� !)

Nvar(f)[�2 + var(�)] + var(u)
(18)

where

! = 2

 
L� 2

L2(L� 1) +
1

L� 1z
!
L�1X
i=1

(L� i)
�
1� (��)i

�
(19)

The discussion of what drives this in-sample R2 will parallel that for the case

of the out-of-sample MSE ratio. First consider the case of constant parameters, so

that var(�) = 0. Then the in-sample �t as a function of L becomes

R2c(L) =
Nvar(f)�2 + N

L
var(u)

Nvar(f)�2 + var(u)
(20)
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Two factors drive the in-sample �t. First, the explanatory power of the funda-

mentals that is re
ected in the term Nvar(f)�2 in the numerator raises the R2.

Second, even in the absence of any explanatory power of the fundamentals (� = 0)

the R2 is still positive due to a spurious small sample �t. This is captured by the

second term in the numerator, (N=L)var(u). This term goes to zero as the sample

length L goes to in�nity. So while small sample estimation error of the parameters

deteriorates the out-of-sample �t, it improves the in-sample �t.

We now consider the impact of time-varying parameters. The impact comes

through three channels. First, it raises the variance of �st, which by itself (holding

constant the explanatory power of the fundamentals) lowers the R2. This is cap-

tured by var(�) in the denominator of the �rst ratio in (18). Second, time-varying

parameters raise the estimation error of parameters. This is captured by ! > 0:

1

L

LX
j=1

E

 
�t�j �

LX
i=1

�i�t�i

!0  
�t�j �

LX
i=1

�i�t�i

!
= Nvar(�)! (21)

Estimation over the period t�L to t�1 leads to an estimate of a weighted average
of parameters,

PL
i=1 �i�t�i. Even abstracting from small sample estimation error,

this weighted average of past parameters di�ers from the actual parameters �t�j

that vary over time. This lowers the in-sample �t as captured by the term �! in
the numerator of the second ratio in (18). Finally, time-varying parameters raise

the explanatory power of the fundamentals as they raise the expected squared

value of the parameters. This improves the R2 and is re
ected by the 1 before the

�! in the numerator of the second ratio in (18).
While small sample estimation error has an opposite impact on the in- and

out-of-sample �t, time-varying parameters have a very similar e�ect. The three

factors related to time-varying parameters are analogous to those discussed for

the out-of-sample �t: increased MSE of the random walk (increased variance of

�st), increased estimation error of parameters and increased explanatory power of

fundamentals due to rise in E�2nt. The last factor improves both the in- and out-

of-sample �t. The second factor deteriorates both the in- and out-of-sample �t.

Only the �rst factor operates in opposing directions, improving the out-of-sample

�t while deteriorating the in-sample �t, but it is tiny in compared to the other two

factors.

Analogous to the discussion of the out-of-sample �t, we can again evaluate the
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quantitative e�ect of time-varying parameters by di�erentiating (18) with respect

to var(�) at the point where var(�) = 0. Setting � = 1 we have

dR2 = R2c
h
�R2c(L) + 1� !

i
dvar(�) (22)

One can again expect the e�ect to be small to the extent that the explanatory

power of the fundamentals, captured by R2c , is small. The three factors driving the

impact of time-varying parameters on the out-of-sample �t are shown in brackets:

the �R2c(L) term that captures the increased variance of �st, the +1 term that

captures the increased explanatory power of the fundamentals and the �! term
that captures the increased estimation error of the parameters.

Without repeating all the graphics analogous to Figures 11 and 12, the message

is the same. The second factor (increased estimation error parameters) lowers the

in-sample �t by almost the same amount as the third factor (increased explanatory

power fundamentals) raises it, while the �rst factor is quite small. It is again the

case that only when �� is very close to 1 the increased estimation error disappears.

Only in that case is there a signi�cant e�ect of time-varying parameters, which

raises the in-sample �t just as it signi�cantly improves the out-of-sample �t in that

case.

Since with the exception of �� ! 1 the impact of time-varying parameters is

small, we conclude that the in-sample R2 is mainly driven by the two factors rele-

vant under constant parameters: the true explanatory power of the fundamentals

and the small sample estimation error. Both raise the R2 with the small sample

estimation error clearly dominant over small samples. This is illustrated in Figure

14.

7 Additional Results

In this section we provide some additional results that largely con�rm our �ndings

so far. First, in Figure 15 we provide some additional sensitivity analysis results.

Figure 15 has four charts. Each chart shows the MSE ratio for the out-of-sample

forecast, with parameter values corresponding to Japan, based on an average of

1000 simulations of the model. Both the result under constant and time-varying

parameters is shown. In the case of time-varying parameters it is assumed that

parameter innovations have no persistence, so �� = 0.
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The top two charts show results when we forecast three and twelve months

out of sample rather than the one-month forecast considered so far. Again the

di�erence between the case of constant and time-varying parameters is virtually

nil. The two lines are almost exactly on top of each other. The bottom left

chart considers a Markov process instead of a process with normally distributed

parameter innovations that we have considered so far. There are two states, in

which the parameter takes on the values of respectively 0 and 2, both with equal

probability. Given any state we are in, there is an equal probability of 0.5 of

staying in that state or moving to the other state. This process implies as before

that both the mean and standard deviation of the parameters is 1 and that they

are uncorrelated over time. It is clear from Figure 15 that this alternative process

makes no di�erence for the results. The constant and time-varying parameter cases

are again virtually indistinguishable.

The bottom right chart shows the result when we triple the standard deviation

of fundamental innovations. This leads to a MSE ratio well below 1 for both the

constant and time-varying parameter cases as the fundamentals have signi�cantly

more explanatory power. But now the MSE ratio is visibly higher for the time-

varying parameter case. This is not surprising in light of the �ndings of the previous

section and can be understood directly from (15). The explanatory power of

fundamentals as measured by R2c is now multiplied by almost a factor 9 as var(f)

is multiplied by a factor 9. The higher MSE ratio under time-varying parameters,

which previously was only visible after signi�cantly zooming in on the numbers

(see Figure 7), now becomes substantial. This shows that when fundamentals have

signi�cant explanatory power, time-varying parameters can make a di�erence for

the MSE ratio.

It is unusual to �nd empirical exchange rate equations with a high R2. One

exception is the case of commodity currencies presented in Section 2 and Figure 6.

In such a case one might indeed argue that the MSE ratio would have been even

lower without time-varying parameters. But in this case, there is no Meese-Rogo�

puzzle to solve as the model beats the random walk.

Finally, Figure 17 shows from a somewhat di�erent perspective that the di�er-

ence between constant and time-varying parameters is small. Figure 3 showed the

evolution of estimates of a particular parameter. Figure 17 does the same using

data generated by the reduced-form model. For one particular simulation of the
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model we report the estimated parameter coe�cient for variable 1 for each of the

P = 200 rolling regressions. The horizontal axis shows the number of the rolling

regression. The results are reported for regressions of length L = 40, L = 120

and L = 200. Each chart shows the result for both constant parameters and

time-varying parameters (with �� = 0). Clearly, the estimated parameter varies

signi�cantly across rolling regressions. It varies from about -10 to +8 for L = 40.

As expected it varies less when L = 120 and even less when L = 200. But even

for L = 200 the estimated parameter varies over a range of about 3.

Two points stand out. First, the variation in estimated parameters is very

similar to that in the data reported in Figure 3. Second, the time-variation in

the parameter estimates is entirely the result of small sample estimation error.

It makes virtually no di�erence whether the actual parameters are constant or

time-varying.

It is also noteworthy that even for L = 200 there is very large small sample

estimation bias. While the true parameter is 1 under constant parameters, the

estimated parameter varies from 0 to -3. This estimation error explains why the

MSE ratio generally continues to be above 1 in the data even for such long samples

that are now available. The limited explanatory power of the fundamentals is more

than o�set by the small sample parameter estimation error. This is in our view

the real explanation for the Meese-Rogo� puzzle, not the presence of time-varying

parameters.

8 Conclusion

A priori the unstable relationship between the exchange rate and fundamentals

is a natural explanation for the poor out-of-sample forecasting performance of

exchange rate models. Such instability increases parameter estimation errors. It

implies that the relationships based on past behavior are less likely to be useful

in the future. While this reasoning is correct, our analysis shows that there is

another o�setting e�ect at work. Time-varying parameters tend to increase the

explanatory power of fundamentals. We �nd that on net time-varying parameters

have virtually no e�ect on the out of sample forecasting performance of exchange

rate models. There are two exceptions to this, but neither sheds any light on the

Meese-Rogo� puzzle. One is the case where the persistence of parameters is close
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to 1, but in that case time-varying parameters have an impact that operates in the

wrong direction: it improves the out-of-sample �t of exchange rate models. This

cannot explain the Meese-Rogo� puzzle of poor out-of-sample �t. The other case

is where fundamentals have high explanatory power for the exchange rate. But

this is counterfactual and implies that there is no Meese-Rogo� puzzle in the �rst

place.

We conclude that the Meese-Rogo� puzzle can only be explained by short-

sample problems. It is important to notice, however, that a major reason behind

the results is that fundamentals have a low explanatory power in exchange rate

equations. Even if we could solve the small-sample problem (by having in�nitely

long samples), in most cases we would not do much better than the random walk.

This means that the basic problem is not so much the instability in the relationship

between exchanges rates and fundamentals, but its weakness.
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Appendix

A Data Appendix

In this Appendix, we describe the data used in the paper. The �rst part relates

to the exchange rate model based on �ve currencies and �ve macro fundamentals.

The second part relates to the so-called commodity currencies.

A.1 Exchange rates and macro fundamentals

Exchange rate: we use bilateral U.S. dollar end-of-period exchange rates from

IFS. The �ve currencies considered are the Swiss franc, the British pound, the

Canadian dollar, the Japanese yen and the German mark. Since the introduction

of the euro in 1999, we convert the euro exchange rate to German marks using the

�xed conversion factor (1.95583 Marks per Euro). The �ve macro fundamentals

we consider are:

Money supply: �(mt � mUS
t ), where mt = lnMt and Mt is M1, OECD Main

Economic Indicators (MEI), for Canada and M1, IFS line 59MA, for Japan. In

the case of Germany/Euro area, we consider M1 seasonally adjusted, IFS line

59MACZF until December 1998 and M1, OECD MEI, for the Euro Area from

January 1999. For the United Kingdom, we take M0, IFS line 19MC.ZF, until

April 2006 (last observation of the IFS series) and M1, OECD MEI, from May

2006. For Switzerland, we use IFS line 34ZF. Finally, for the United States, we

take the corresponding series, i.e. either M1, IFS line 59MA or M1, OECD MEI.

All seasonally unadjusted series were adjusted using monthly dummies.

Industrial production: �(yt � yUSt ), where yt = lnYt and Yt is the industrial

production index, taken from IFS, line 66CZF, except for Switzerland for which

no monthly series is available. For this country, we compute monthly observations

from quarterly data (IFS, line 66) using the same procedure as in Molodtsova and

Papell (2009).
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Unemployment rate: �(ut � uUSt ), where ut = lnUt and Ut is the unemploy-

ment rate from OECD MEI except for Germany / Euro area. For this country, we

take a series from Datastream (Mnemonic WGUN%TOTQ) that covers only West

Germany and is thus una�ected by the German reuni�cation that took place in

1990.

Interest rate: it�1 � iUSt�1, where it is the monthly return calculated from the

money market rate, IFS line 60B.

Oil price: �poilt , where p
oil
t = lnP oilt and P oilt is the average crude oil spot price

from IFS.

A.2 Commodity currencies

Exchange rate: as in the previous model, we use bilateral U.S. dollar end-of-

period exchange rates from IFS. The three commodity currencies considered are

the Australian, the Canadian and the New Zealand dollars. We use monthly data

over a common sample from January 1986 to December 2008.

Commodity prices: �cpt, where cpt = lnCPt and CPt is a U.S. dollars de-

nominated country-speci�c index of commodity prices. For Australia, we use the

index of commodity prices ("all items") from the Reserve Bank of Australia. For

Canada, the index ("Total, all commodities") is from the Bank of Canada and is

obtained from the CANSIM database. Finally, for New Zealand, we use the ANZ

Commodity Price Index.

B Algebra Section 5

In this Appendix we will derive the result that the ratio of the expected mean

squared forecast error of the model relative to the random walk can be written as

(12). We already know that

MSERW = E(�s2t ) = Nvar(f)(�2 + var(�)) + var(u) (23)

26



We therefore only need to compute the expected mean squared forecast error of

the model, which is

MSEMODEL = E(�st � f 0t �̂)
2 = E

 
f 0t(�t �

LX
i=1

�i�t�i) + ut � f 0t t
LX
i=1

ut�ift�i

!2
=

E

 
�t �

LX
i=1

�i�t�i

!0
ftf

0
t

 
�t �

LX
i=1

�i�t�i

!
+ var(u)

+
LX
i=1

LX
j=1

Eut�iut�jf
0
t tft�if

0
t�j 

0
tft =

var(f)E

 
�t �

LX
i=1

�i�t�i

!0  
�t �

LX
i=1

�i�t�i

!
+ var(u) + var(u)E(f 0t tft) (24)

We have

E

 
�t �

LX
i=1

�i�t�i

!0  
�t �

LX
i=1

�i�t�i

!
=

Nvar(�) + E

 
RX
i=1

�i ~�t�i

!0  LX
i=1

�i ~�t�i

!
� 2

L

LX
i=1

E ~�0t
~�t�i =

Nvar(�) +
LX
i=1

LX
j=1

E ~�0t�i�
0
i�j
~�t�j �

2

L

LX
i=1

E ~�0t
~�t�i (25)

where we used that E(�i) = I=L.

Next use that

I=L = E(�0i) =
LX
j=1

E(�0i�j) =
X
j 6=i

E(�0i�j) + E�0� = (26)

(L� 1)E�0i�j + E�0�

It follows that for i 6= j

E(�0i�j) =
1

L(L� 1)I �
1

L� 1E�
0� (27)

The matrix E�0� has zero o�-diagonal elements. By symmetry all on-diagonal

elements are the same and are equal to
PL
j=1E�(i; j)

2 for any i, where �(i; j) is

element (i; j) of �. We refer to these diagonal elements as z.
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These results give

LX
i=1

LX
j=1

E ~�0t�i�
0
i�j
~�t�j = (28)
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We then have
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where

h = z
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(31)

Here we used that
PL�1
i=1 (L� i) =

PL
i=2(i� 1) = 0:5L(L� 1).

We then have

MSEMODEL = Nvar(f)var(�)h+ var(u) + var(u)E(f 0t tft) (32)

This implies

MSEMODEL�MSERW = Nvar(f)
h
��2 � var(�) + var(�)h

i
+ var(f)E(f 0t tft)

(33)

This implies

MSEMODEL

MSERW
= 1 +

MSEMODEL �MSERW

MSERW
=

1 +
�Nvar(f)�2 + var(u)E(f 0t tft)

Nvar(f) [�2 + var(�)] + �2u
+

Nvar(f)var(�)(h� 1)
Nvar(f) [�2 + var(�)] + �2u

(34)
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C Algebra Section 6

The in-sample �t is then de�ned as

R2 = 1� MSEINSAMPLE

MSERW
(35)

where
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We have
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Notice that the second term is non-zero only for i = j. Also use that
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We then have

1

L

LX
j=1

E

 
ut�j � f 0t�j t

LX
i=1

ut�ift�i

!0  
ut�j � f 0t�j t

LX
i=1

ut�ift�i

!
= (41)

var(u)� 2N
L
var(u) +

1

L
var(u)E

 
LX
i=1

f 0t�i tft�i

!
=

var(u)� 2N
L
var(u) +

N

L
var(u) = var(u)(1� N

L
) (42)

29



Therefore
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We have
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Substituting this, we get
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We then have
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Therefore
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This implies

R2 = 1� MSEINSAMPLE

MSERW
= �MSEMODEL �MSERW
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Figure 1 Out-of-Sample Fit in Data: MSEModel/MSERW
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(horizontal axis) . The model includes

 

the following

 

regressors: differential

 

with

 

the U.S. of money supply
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and unemployment
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price

 

and the lagged

 

interest

 

rates differential

 

in level. The MSEs
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Figure 2 In-Sample versus Out-of-Sample Fit in Data: 
1-R2 versus MSEModel/MSERW
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Figure 3 Estimated Coefficients from Rolling Regressions 
in Data (JPY/USD: Relative Money Supply Growth)*
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Figure 5 Out-of-Sample Fit Model versus Data: MSEModel/MSERW*
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Figure 6 In-Sample Fit Model versus Data: R2 *
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Figure 7 Out-of-Sample Fit in Data: MSEModel/MSERW (ρβ
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Figure 7--continued
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Figure 8 In-Sample Fit in Model (ρβ
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Figure 8--continued
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Figure 9 Out-of-Sample Fit in Model—Sensitivity to ρβ
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Figure 10 In-Sample Fit in Model—Sensitivity to ρβ
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Figure 11 Impact Time-Varying Parameters on Out-of-Sample Fit
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Figure 12 Impact Time-Varying Parameters on Out-
 of-Sample Fit: Role of ρβ
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Figure 13 Factors Contributing to Out-
 of-Sample Fit under Constant parameters
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Figure 14 Factors Contributing to In-
 Sample Fit (R2) under Constant parameters
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Figure 15 Sensitivity Analysis--Japan
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Figure 16 Estimated Coefficients Rolling Regressions 
Model (Variable 1)
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